
-
课程介绍
思维导图
课程资料
- 课件下载:(报名后可见)
课程背景
本课为“火炬上的深度学习”附加课程:对抗神经网络大家族。在本课程中,我们介绍了生成式对抗网络(GANs)这一新型神经网络模型,并介绍了多种GAN变种模型在不同领域的应用。
参考文献
- Jon Gauthier: Conditional generative adversarial nets for convolutional face generation, CoRR , abs/1411.1784, 2014.
- Scott Reed et al., Generative Adversarial Text to Image Synthesis, arXiv:1605.05396v2
- Xi Chen etal.: InfoGAN : Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets)
- Emily Dentonet al. Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks
- Christian Ledig et al.: Photo-‐Realistic Single Image Super-‐Resolution Using a Generative Adversarial Network, arXiv:1609.04802v1
- Phillip Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, arXiv:1611.07004v1, 2016
- Jun Yan Zhu et al.:Unpaired Image to Image Translation using Cycle Consistent Adversarial Networks, arXiv:1703.10593v1, 2017
- Tim Salimans : Improved Techniques for Training GANs, arXiv:1606.03498v1,2016
课程目的
学完本课程,你能做到
- 了解 GAN 的各种有趣的变种
课程详情
本讲的主要内容有:
利用额外信息的 GAN
Conditional GAN
Text to GAN
Info GAN
高分辨率图生成
Laplacian pyramid GAN
图像到图像翻译
pix2pix
CycleGAN
对GAN生成图像的评估方法